71 research outputs found

    Calibration by differentiation – Self‐supervised calibration for X‐ray microscopy using a differentiable cone‐beam reconstruction operator

    Get PDF
    High‐resolution X‐ray microscopy (XRM) is gaining interest for biological investigations of extremely small‐scale structures. XRM imaging of bones in living mice could provide new insights into the emergence and treatment of osteoporosis by observing osteocyte lacunae, which are holes in the bone of few micrometres in size. Imaging living animals at that resolution, however, is extremely challenging and requires very sophisticated data processing converting the raw XRM detector output into reconstructed images. This paper presents an open‐source, differentiable reconstruction pipeline for XRM data which analytically computes the final image from the raw measurements. In contrast to most proprietary reconstruction software, it offers the user full control over each processing step and, additionally, makes the entire pipeline deep learning compatible by ensuring differentiability. This allows fitting trainable modules both before and after the actual reconstruction step in a purely data‐driven way using the gradient‐based optimizers of common deep learning frameworks. The value of such differentiability is demonstrated by calibrating the parameters of a simple cupping correction module operating on the raw projection images using only a self‐supervisory quality metric based on the reconstructed volume and no further calibration measurements. The retrospective calibration directly improves image quality as it avoids cupping artefacts and decreases the difference in grey values between outer and inner bone by 68–94%. Furthermore, it makes the reconstruction process entirely independent of the XRM manufacturer and paves the way to explore modern deep learning reconstruction methods for arbitrary XRM and, potentially, other flat‐panel computed tomography systems. This exemplifies how differentiable reconstruction can be leveraged in the context of XRM and, hence, is an important step towards the goal of reducing the resolution limit of in vivo bone imaging to the single micrometre domain

    Ultralow‐parameter denoising: trainable bilateral filter layers in computed tomography

    Get PDF
    Background Computed tomography (CT) is widely used as an imaging tool to visualize three-dimensional structures with expressive bone-soft tissue contrast. However, CT resolution can be severely degraded through low-dose acquisitions, highlighting the importance of effective denoising algorithms. Purpose Most data-driven denoising techniques are based on deep neural networks, and therefore, contain hundreds of thousands of trainable parameters, making them incomprehensible and prone to prediction failures. Developing understandable and robust denoising algorithms achieving state-of-the-art performance helps to minimize radiation dose while maintaining data integrity. Methods This work presents an open-source CT denoising framework based on the idea of bilateral filtering. We propose a bilateral filter that can be incorporated into any deep learning pipeline and optimized in a purely data-driven way by calculating the gradient flow toward its hyperparameters and its input. Denoising in pure image-to-image pipelines and across different domains such as raw detector data and reconstructed volume, using a differentiable backprojection layer, is demonstrated. In contrast to other models, our bilateral filter layer consists of only four trainable parameters and constrains the applied operation to follow the traditional bilateral filter algorithm by design. Results Although only using three spatial parameters and one intensity range parameter per filter layer, the proposed denoising pipelines can compete with deep state-of-the-art denoising architectures with several hundred thousand parameters. Competitive denoising performance is achieved on x-ray microscope bone data and the 2016 Low Dose CT Grand Challenge data set. We report structural similarity index measures of 0.7094 and 0.9674 and peak signal-to-noise ratio values of 33.17 and 43.07 on the respective data sets. Conclusions Due to the extremely low number of trainable parameters with well-defined effect, prediction reliance and data integrity is guaranteed at any time in the proposed pipelines, in contrast to most other deep learning-based denoising architectures

    On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT Setting

    Full text link
    Computed tomography (CT) is routinely used for three-dimensional non-invasive imaging. Numerous data-driven image denoising algorithms were proposed to restore image quality in low-dose acquisitions. However, considerably less research investigates methods already intervening in the raw detector data due to limited access to suitable projection data or correct reconstruction algorithms. In this work, we present an end-to-end trainable CT reconstruction pipeline that contains denoising operators in both the projection and the image domain and that are optimized simultaneously without requiring ground-truth high-dose CT data. Our experiments demonstrate that including an additional projection denoising operator improved the overall denoising performance by 82.4-94.1%/12.5-41.7% (PSNR/SSIM) on abdomen CT and 1.5-2.9%/0.4-0.5% (PSNR/SSIM) on XRM data relative to the low-dose baseline. We make our entire helical CT reconstruction framework publicly available that contains a raw projection rebinning step to render helical projection data suitable for differentiable fan-beam reconstruction operators and end-to-end learning.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised Tomographic Image Denoising

    Full text link
    Self-supervised image denoising techniques emerged as convenient methods that allow training denoising models without requiring ground-truth noise-free data. Existing methods usually optimize loss metrics that are calculated from multiple noisy realizations of similar images, e.g., from neighboring tomographic slices. However, those approaches fail to utilize the multiple contrasts that are routinely acquired in medical imaging modalities like MRI or dual-energy CT. In this work, we propose the new self-supervised training scheme Noise2Contrast that combines information from multiple measured image contrasts to train a denoising model. We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss. The trained denoising operator achieves convincing quantitative and qualitative results, outperforming state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray microscopy data with respect to the noisy baseline. Our experiments on different real measured data sets indicate that Noise2Contrast training generalizes to other multi-contrast imaging modalities

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of ÎČ-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of beta-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Deep impact? Is mercury in dab (Limanda limanda) a marker for dumped munition? Results from munition dump site Kolberger Heide (Baltic Sea)

    No full text
    Dumped munitions contain various harmful substances which can affect marine biota like fish. One of them is mercury (Hg), included in the common explosive primer Hg fulminate. There is still a lack of knowledge whether dumped munitions impact the Hg concentrations in the Baltic Sea environment. This study aims to answer the question if dab caught at the dump site Kolberger Heide show higher Hg concentrations released from munition sources and whether Hg in fish is a usable marker for munition exposure. Therefore, a total of 251 individual dab (Limanda limanda) were analysed including 99 fish from the dump site. In fish from the Kolberger Heide, no elevated Hg concentrations were found compared to reference sites when age-dependent bioaccumulation of mercury was considered. Therefore we conclude that Hg in fish is no suitable indicator for exposure to munition dumping, e.g. in the frame of possible future monitoring studies as Hg exposure originating from dumped munition is only a small contributor to overall Hg exposure of fish
    • 

    corecore